Какие первые шаги должен сделать радиолюбитель, решивший собрать схему на микроконтроллере? Естественно, необходима управляющая программа - "прошивка", а также программатор.

И если с первым пунктом нет проблем - готовую "прошивку" обычно выкладывают авторы схем, то вот с программатором дела обстоят сложнее.

Цена готовых USB-программаторов довольно высока и лучшим решением будет собрать его самостоятельно. Вот схема предлагаемого устройства (картинки кликабельны).

Основная часть.

Панель установки МК.

Исходная схема взята с сайта LabKit.ru с разрешения автора, за что ему большое спасибо. Это так называемый клон фирменного программатора PICkit2. Так как вариант устройства является "облегчённой" копией фирменного PICkit2, то автор назвал свою разработку PICkit-2 Lite , что подчёркивает простоту сборки такого устройства для начинающих радиолюбителей.

Что может программатор? С помощью программатора можно будет прошить большинство легкодоступных и популярных МК серии PIC (PIC16F84A, PIC16F628A, PIC12F629, PIC12F675, PIC16F877A и др.), а также микросхемы памяти EEPROM серии 24LC. Кроме этого программатор может работать в режиме USB-UART преобразователя, имеет часть функций логического анализатора. Особо важная функция, которой обладает программатор - это расчёт калибровочной константы встроенного RC-генератора некоторых МК (например, таких как PIC12F629 и PIC12F675).

Необходимые изменения.

В схеме есть некоторые изменения, которые необходимы для того, чтобы с помощью программатора PICkit-2 Lite была возможность записывать/стирать/считывать данные у микросхем памяти EEPROM серии 24Cxx.

Из изменений, которые были внесены в схему. Добавлено соединение от 6 вывода DD1 (RA4) до 21 вывода ZIF-панели. Вывод AUX используется исключительно для работы с микросхемами EEPROM-памяти 24LС (24C04, 24WC08 и аналоги). По нему передаются данные, поэтому на схеме панели программирования он помечен словом "Data". При программировании микроконтроллеров вывод AUX обычно не используется, хотя он и нужен при программировании МК в режиме LVP.

Также добавлен "подтягивающий" резистор на 2 кОм, который включается между выводом SDA и Vcc микросхем памяти.

Все эти доработки я уже делал на печатной плате, после сборки PICkit-2 Lite по исходной схеме автора.

Микросхемы памяти 24Cxx (24C08 и др.) широко используются в бытовой радиоаппаратуре, и их иногда приходится прошивать, например, при ремонте кинескопных телевизоров. В них память 24Cxx применяется для хранения настроек.

В ЖК-телевизорах применяется уже другой тип памяти (Flash-память). О том, как прошить память ЖК-телевизора я уже рассказывал . Кому интересно, загляните.

В связи с необходимостью работы с микросхемами серии 24Cxx мне и пришлось "допиливать" программатор. Травить новую печатную плату я не стал, просто добавил необходимые элементы на печатной плате. Вот что получилось.

Ядром устройства является микроконтроллер PIC18F2550-I/SP .

Это единственная микросхема в устройстве. МК PIC18F2550 необходимо "прошить". Эта простая операция у многих вызывает ступор, так как возникает так называемая проблема "курицы и яйца". Как её решил я, расскажу чуть позднее.

Список деталей для сборки программатора. В мобильной версии потяните таблицу влево (свайп влево-вправо), чтобы увидеть все её столбцы.

Название Обозначение Номинал/Параметры Марка или тип элемента
Для основной части программатора
Микроконтроллер DD1 8-ми битный микроконтроллер PIC18F2550-I/SP
Биполярные транзисторы VT1, VT2, VT3 КТ3102
VT4 КТ361
Диод VD1 КД522, 1N4148
Диод Шоттки VD2 1N5817
Светодиоды HL1, HL2 любой на 3 вольта, красного и зелёного цвета свечения
Резисторы R1, R2 300 Ом
R3 22 кОм
R4 1 кОм
R5, R6, R12 10 кОм
R7, R8, R14 100 Ом
R9, R10, R15, R16 4,7 кОм
R11 2,7 кОм
R13 100 кОм
Конденсаторы C2 0,1 мк К10-17 (керамические), импортные аналоги
C3 0,47 мк
Электролитические конденсаторы C1 100 мкф * 6,3 в К50-6, импортные аналоги
C4 47 мкф * 16 в
Катушка индуктивности (дроссель) L1 680 мкГн унифицированный типа EC24, CECL или самодельный
Кварцевый резонатор ZQ1 20 МГц
USB-розетка XS1 типа USB-BF
Перемычка XT1 любая типа "джампер"
Для панели установки микроконтроллеров (МК)
ZIF-панель XS1 любая 40-ка контактная ZIF-панель
Резисторы R1 2 кОм МЛТ, МОН (мощностью от 0,125 Вт и выше), импортные аналоги
R2, R3, R4, R5, R6 10 кОм

Теперь немного о деталях и их назначении.

Зелёный светодиод HL1 светится, когда на программатор подано питание, а красный светодиод HL2 излучает в момент передачи данных между компьютером и программатором.

Для придания устройству универсальности и надёжности используется USB-розетка XS1 типа "B" (квадратная). В компьютере же используется USB-розетка типа "А". Поэтому перепутать гнёзда соединительного кабеля невозможно. Также такое решение способствует надёжности устройства. Если кабель придёт в негодность, то его легко заменить новым не прибегая к пайке и монтажным работам.

В качестве дросселя L1 на 680 мкГн лучше применить готовый (например, типов EC24 или CECL). Но если готовое изделие найти не удастся, то дроссель можно изготовить самостоятельно. Для этого нужно намотать 250 - 300 витков провода ПЭЛ-0,1 на сердечник из феррита от дросселя типа CW68. Стоит учесть, что благодаря наличию ШИМ с обратной связью, заботиться о точности номинала индуктивности не стоит.

Напряжение для высоковольтного программирования (Vpp) от +8,5 до 14 вольт создаётся ключевым стабилизатором. В него входят элементы VT1, VD1, L1, C4, R4, R10, R11. С 12 вывода PIC18F2550 на базу VT1 поступают импульсы ШИМ. Обратная связь осуществляется делителем R10, R11.

Чтобы защитить элементы схемы от обратного напряжения с линий программирования в случае использования USB-программатора в режиме внутрисхемного программирования ICSP (In-Circuit Serial Programming) применён диод VD2. VD2 - это диод Шоттки . Его стоит подобрать с падением напряжения на P-N переходе не более 0,45 вольт. Также диод VD2 защищает элементы от обратного напряжения, когда программатор применяется в режиме USB-UART преобразования и логического анализатора.

При использовании программатора исключительно для программирования микроконтроллеров в панели (без применения ICSP), то можно исключить диод VD2 полностью (так сделано у меня) и установить вместо него перемычку.

Компактность устройству придаёт универсальная ZIF-панель (Zero Insertion Force - с нулевым усилием установки).

Благодаря ей можно "зашить" МК практически в любом корпусе DIP.

На схеме "Панель установки микроконтроллера (МК)" указано, как необходимо устанавливать микроконтроллеры с разными корпусами в панель. При установке МК следует обращать внимание на то, чтобы микроконтроллер в панели позиционируется так, чтобы ключ на микросхеме был со стороны фиксирующего рычага ZIF-панели.

Вот так нужно устанавливать 18-ти выводные микроконтроллеры (PIC16F84A, PIC16F628A и др.).

А вот так 8-ми выводные микроконтроллеры (PIC12F675, PIC12F629 и др.).

Если есть нужда прошить микроконтроллер в корпусе для поверхностного монтажа (SOIC), то можно воспользоваться переходником или просто подпаять к микроконтроллеру 5 выводов, которые обычно требуются для программирования (Vpp, Clock, Data, Vcc, GND).

Готовый рисунок печатной платы со всеми изменениями вы найдёте по ссылке в конце статьи. Открыв файл в программе Sprint Layout 5.0 можно с помощью режима "Печать" не только распечатать слой с рисунком печатных проводников, но и просмотреть позиционирование элементов на печатной плате. Обратите внимание на изолированную перемычку, которая связывает 6 вывод DD1 и 21 вывод ZIF-панели. Печатать рисунок платы необходимо в зеркальном отображении .

Изготовить печатную плату можно методом ЛУТ, а также маркером для печатных плат , с помощью цапонлака (так делал я) или "карандашным" методом .

Вот рисунок позиционирования элементов на печатной плате (кликабельно).

При монтаже первым делом необходимо запаять перемычки из медного лужёного провода, затем установить низкопрофильные элементы (резисторы, конденсаторы, кварц, штыревой разъём ISCP), затем транзисторы и запрограммированный МК. Последним шагом будет установка ZIF-панели, USB-розетки и запайка провода в изоляции (перемычки).

"Прошивка" микроконтроллера PIC18F2550.

Файл "прошивки" - PK2V023200.hex необходимо записать в память МК PIC18F2550I-SP при помощи любого программатора, который поддерживает PIC микроконтроллеры (например, Extra-PIC). Я воспользовался JDM Programmator’ом JONIC PROG и программой WinPic800 .

Залить "прошивку" в МК PIC18F2550 можно и с помощью всё того же фирменного программатора PICkit2 или его новой версии PICkit3. Естественно, сделать это можно и самодельным PICkit-2 Lite, если кто-либо из друзей успел собрать его раньше вас:).

Также стоит знать, что "прошивка" микроконтроллера PIC18F2550-I/SP (файл PK2V023200.hex ) записывается при установке программы PICkit 2 Programmer в папку вместе с файлами самой программы. Примерный путь расположения файла PK2V023200.hex - «C:\Program Files (x86)\Microchip\PICkit 2 v2\PK2V023200.hex» . У тех, у кого на ПК установлена 32-битная версия Windows, путь расположения будет другим: «C:\Program Files\Microchip\PICkit 2 v2\PK2V023200.hex» .

Ну, а если разрешить проблему "курицы и яйца" не удалось предложенными способами, то можно купить уже готовый программатор PICkit3 на сайте AliExpress. Там он стоит гораздо дешевле. О том, как покупать детали и электронные наборы на AliExpress я писал .

Обновление "прошивки" программатора.

Прогресс не стоит на месте и время от времени компания Microchip выпускает обновления для своего ПО, в том числе и для программатора PICkit2, PICkit3. Естественно, и мы можем обновить управляющую программу своего самодельного PICkit-2 Lite. Для этого понадобится программа PICkit2 Programmer. Что это такое и как пользоваться - чуть позднее. А пока пару слов о том, что нужно сделать, чтобы обновить "прошивку".

Для обновления ПО программатора необходимо замкнуть перемычку XT1 на программаторе, когда он отключен от компьютера. Затем подключить программатор к ПК и запустить PICkit2 Programmer. При замкнутой XT1 активируется режим bootloader для загрузки новой версии прошивки. Затем в PICkit2 Programmer через меню "Tools" - "Download PICkit 2 Operation System" открываем заранее подготовленный hex-файл обновлённой прошивки. Далее произойдёт процесс обновления ПО программатора.

После обновления нужно отключить программатор от ПК и снять перемычку XT1. В обычном режиме перемычка разомкнута . Узнать версию ПО программатора можно через меню "Help" - "About" в программе PICkit2 Programmer.

Это всё по техническим моментам. А теперь о софте.

Работа с программатором. Программа PICkit2 Programmer.

Для работы с USB-программатором нам потребуется установить на компьютер программу PICkit2 Programmer. Это специальная программа обладает простым интерфейсом, легко устанавливается и не требует особой настройки. Стоит отметить, что работать с программатором можно и с помощью среды разработки MPLAB IDE, но для того, чтобы прошить/стереть/считать МК достаточно простой программы - PICkit2 Programmer. Рекомендую.

После установки программы PICkit2 Programmer подключаем к компьютеру собранный USB-программатор. При этом засветится зелёный светодиод ("питание"), а операционная система опознает устройство как "PICkit2 Microcontroller Programmer" и установит драйвера.

Запускаем программу PICkit2 Programmer. В окне программы должна отобразиться надпись.

Если программатор не подключен, то в окне программы отобразится страшная надпись и краткие инструкции "Что делать?" на английском.

Если же программатор подключить к компьютеру с установленным МК, то программа при запуске определить его и сообщит нам об этом в окне PICkit2 Programmer.

Поздравляю! Первый шаг сделан. А о том, как пользоваться программой PICkit2 Programmer, я рассказал в отдельной статье. Следующий шаг .

Необходимые файлы:

    Руководство пользователя PICkit2 (рус.) берём или .

Конкурс начинающих радиолюбителей
“Моя радиолюбительская конструкция”

USB AVR программатор

Схема и программное обеспечение простого высокоскоростного USB AVR программатора, который может собрать своими руками и начинающий радиолюбитель

Конкурсная конструкция начинающего радиолюбителя –
“USB AVR программатор”

Здравствуйте уважаемые друзья и гости сайта!
Представляю на ваш суд вторую конкурсную работу.
Автор конструкции – Григорьев Илья Сергеевич .
Теперь на нашем сайте не только “Лед тронулся”, но и “Заседание продолжается”.

USB AVR программатор

Немного о данной конструкции.
На первый взгляд кажется, что эта схема сложна, не “по зубам” начинающим, а автор – уже довольно опытный радиолюбитель.
Смею всех заверить, Илья Сергеевич – начинающий радиолюбитель. А своей конструкцией он доказал, что при желании, настойчивости, целеустремленности, конструкцию такой сложности сможет собрать любой начинающий радиолюбитель.
Ну а теперь, слово автору.

Григорьев Илья Сергеевич, город Хабаровск

Всем привет!
Представляю на ваш суд вторую свою завершенную работу (первая- простая мигалка).
Решил, что в будущем буду собирать схемы, на основе каких-либо микросхем, которые нужно программировать, для чего нужен, собственно говоря, программатор!
В интернете огромное количество схем, на любой вкус, но основная проблема и замечание к схемам – это то, что у меня нет ни LTP, ни COM порта, остается вариант USB программатора. Но и тут есть своя загвоздка – для большинства программаторов, для начала работы, их микросхемы нужно запрограммировать на работу, а для этого нужен… – правильно, программатор! Можно было конечно собрать программатор Громова, пройтись по друзьям и найти LTP или COM порт, но мне этого не хотелось. Оставался последний вариант – это использовать программатор на основе микросхемы FT232RL, минус у этого программатора и у этой микросхемы только цена последней – она у нас в Хабаровске стоит в районе 230 рублей. Я решил на таком денег не экономить и взяться за сборку программатора на FT232RL.

Итак, список деталек:
Это сердце программатора – FT232RL . Цена- 230р
Вторая микросхема- 74HC244, она нужна, т.к у этого программатора есть еще один минус - он не отдает линию RESET по завершении программирования. Поэтому, чтобы схема стартанула, надо выдрать из платы разьем ISP, что очень неудобно. Это можно решить просто добавив к этой схеме буфферную микросхему 74HC244. Цена 20-30 р
И далее набор мелочевки:
– 4 резистора по 47 Ом
– 4 резистора по 100 Ом
– 1 резистор на 4.7 Ком
– 3 резистора на 300 Ом
– 3 кондера по 0.1u
– 3 светодиода(к,з,ж)
– 1 диод Шоттки (чтобы возможный обратный ток от прошиваемого устройства не сжег программатор и ПК)
– 1 USB type B, его еще называют принтерным
Вот и все, что надо! Мелочевка стоит в районе 50 рублей
Все компоненты я брал в обычном исполнении и smd, т.к. до конца не знал, как получится у меня работа с smd компонентами, вдруг пришлось бы собирать большой вариант.

Вот сама схема:

Принцип работы.
Программатор запитывается от USB порта. Уровни выходных сигналов программатора с помощью джампера JP1 могут быть заданы или 5-ти вольтовыми, или 3-ех вольтовыми.
Напряжение питания программатора может быть подано через разъем X2 на программируемую плату, для чего нужно замкнуть джампер JP2.
Следует иметь ввиду, что при 5-ти вольтовом питании напряжение подается с USB порта. И максимально ток, который можно получить с программатора, ограничен величиной 500 мА. Однако для такого тока микросхему FT232 нужно настроить с помощью утилиты FT Prog.
При 3-ех вольтовом питании напряжение берется с выхода внутреннего стабилизатора микросхемы FT232, максимальный ток которого равен порядка 50 мА.
Для предотвращения подачи питания на USB порт от внешнего устройства на программаторе установлен диод Шоттки (у них маленькое падение напряжения в прямом направлении). При желании диод VD1 можно заменить обычным диодом или перемычкой, но эту уже на ваш страх и риск.
Также программатор можно использовать как USB-UART преобразователь. Для этого на разъем Х2 выведены сигналы RXD, TXD и подключены светодиоды LED2, LED3. Они вспыхивают, когда происходит передача данных.
Программатор не нужно отключать от программируемой платы, потому что после программирования микросхема DD1 переводит выходные буферы в третье состояние.
Светодиод LED1 загорается, когда идет процесс программирования.
На контактную площадку JP можно вывести тактовый сигнал. Для этого требуется конфигурирование FT232 с помощью утилиты FT Prog.

Сам процесс сборки.
Сначала я распечатал схему на глянцевый листок от журнала (использовал и фотобумагу и клейкую бумагу для принтера, все не то… самый лучший эффект – это печать схемы на глянцевом журнале). Потом, после соединения глянцевого листочка с кусочком текстолита, начинаем гладить утюгом, выставив на нем максимальную температуру. Сначала я приложил утюг прям на листик, что бы он приклеился к текстолиту, подержал так секунд 10, затем сверху положил листок бумаги и начал гладить в течении 3-4 минут, затем, убрал листок бумаги и еще на несколько секунд приложил утюг и острым уголком утюга поводил по тем местам, где будут будущие дорожки для микросхем.

После этого убираем утюг, и даем плате полностью остыть. Потом окунаем на 5 минут наш текстолит с глянцевой бумажкой в теплую воду, что бы бумага намокла и отстала он текстолита, потом скатываем осторожно бумагу. Вот что получается:

Затем травим. Я травлю хлорным железом: наливаю почти горячую воду, растворяю в нем порошок, окунаю текстолит и потом наливаю в тазик горячую воду и туда окунаю плошку с хлорным железом. Чем больше концентрация раствора и температура- тем быстрее пройдет реакция.
Вот что получилось:

Затем я взял ватку с ацетоном и снял тонер, потом залудил.

И начал паять:

Собрал программатор, после чего ОБЯЗАТЕЛЬНО проверил все на наличие короткого замыкания. Вообще, т.к. я впервые работал с такой мелочью, то после каждого резистора, после каждого кондера я проверял программатор на просвет(очень хорошо видно попал ли припой на соседние дорожки) и проверял мультиметром на замыкание цепи. Итог такой- 2 раза были замыкания под резисторами…все удачно исправил.
Так же после сборки программатора не следует сразу включать его в USB порт. Убедитесь в отсутствии замыканий между землей и плюсом питания, установите джамперы в требуемое положение и только затем подключайте программатор к компьютеру.
Честно сказать- я волновался, хоть и был уверен в отсутствии КЗ.
После подключения я почувствовал нагревание платы, в районе FT232RL, а ПК выдал сообщение о подключении неизвестного устройства с неправильной работой. Я быстро отключил программатор и еще раз, внимательно просмотрел все дорожки на предмет прилипания припоя к соседним дорожкам и еще раз пропаял все выводы микросхем. После этого еще раз подключил программатор и, о чудо! , программатор определился и попросил установить дрова! Поставил дрова и в диспетчере приложения появились 2 новых устройства:

Ура! Теперь можно всерьез задуматься о работе с микросхемами!
Спасибо за внимание!

(666.9 KiB, 2,785 hits)

Уважаемые друзья и гости сайта!

Не забывайте высказывать свое мнение по конкурсным работам и принимайте участие в обсуждениях на форуме сайта. Спасибо.

Программатор выполнен на основе драйвера от Objective Development и полностью совместим по командам с оригинальным программатором AVR910 от ATMEL. Описание устройства. Предохранитель защищает линий питания порта USB от случайного замыкания по цепям питания программатора. Диоды VD1, VD2 впрямительные кремниевые, они предназначены для понижения питания микроконтроллера до 3,6 В. Согласно документации, контроллер может работать при таком напряжении питания до частоты чуть более 14 МГц. Светодиоды VL1 ("RD ”), VL2 ("WR ”) сигнализируют о текущих действиях программатора и обозначают режимы чтения и записи. Светодиод VL3 ("PWR ”) показывает подачу питания на .

Джампер J1 - (MODify ) служит для начального программирования управляющего МК программатора. При его замыкании, к разъему ISP подключается внешний программатор и производится загрузка в МК управляющей программы. После программирования управляющего МК программатора этот джампер необходимо разомкнуть и замкнуть джампер J2 - NORMal.

Джампер J3 LOW SCK понижает тактовую частоту порта SPI МК программатора до ~20 кГц. При разомкнутом джампере частота SPI нормальная, при замкнутом - пониженная. Переключать джампер можно на ходу, так как управляющая программа МК программатора проверяет состояние линии PB0 при каждом обращении к порту SPI. Не рекомендуется переключать джампер при запущенном процессе записи/чтения программируемого МК, т.к., скорее всего, это приведет к искажению записываемых/читаемых данных. Джампер J3 введен для возможности программирования МК AVR, тактируемых от внутреннего генератора 128 кГц.

Резисторы R10 - R14 предназначены для согласования уровней сигналов микроконтроллера программатора и внешних цепей (программируемый МК или другой программатор). Тактовая частота порта SPI МК программатора при разомкнутом джампере J3 равна 187,5 кГц. Это позволяет программировать контроллеры с тактовой частотой примерно от 570 кГц для ATtiny/ATmega, 750 кГц для 90S и 7,5 МГц для 89S. Контроллеры программируются от 10 до 30 секунд (при использовании утилиты AVRProg v.1.4 из пакета AVR Studio) вместе с верификацией в зависимости от объема FLASH памяти и тактовой частоты.

На вывод LED разъема ISP выведен меандр с частотой 1 МГц для "оживления" МК, у которых были ошибочно запрограммированы фьюз-биты, отвечающие за тактирование. Сигнал генерируется постоянно и не зависит от режима работы программатора. Программатор тестировался с программами AVRProg v.1.4 (входит в пакет AVRStudio), ChipBlasterAVR v.1.07 Evaluation, CodeVisionAVR, AVROSP (ATMEL AVR Open Source Programmer). Для нормального функционирования контроллера в схеме необходимо, чтобы были запрограммированы (установлены в "0") биты SPIEN , CKOPT , SUT0 и BODEN . Обычно микроконтроллеры, идущие с завода, т.е. новые, имеют уже запрограммированный бит SPIEN . Остальные биты должны быть незапрограммированные (установлены в "1").

Инструкция по установке и работе. Прошить контроллер. Подключить свежеиспеченный программатор к компьютеру через USB. Операционная система найдет новое устройство - AVR910 USB Programmer, при предложении автоматически найти драйвер, отказаться, и указать путь к inf-файлу, в зависимости от установленной на вашем компьютере операционной системы.

На форуме находятся все файлы, а также печатная плата для нашего программатора avr. Здесь покажу технологию сборки USB программатора AVR и упаковки в корпус. Для начала скачиваем архив и делаем печатную плату.

Потом впаиваем на неё все детали. Не смог найти маленький кварц, поэтому впаял большой, но на длинных ножках, чтобы потом загнуть, чтоб не мешал при установки платы в корпус. Далее подбираем подходящий корпус, у меня был готовый.

Подгоняем плату под корпус, делаем все замеры, сверлим отверстия и вот вам готовый прибор, с универсальной платой.

Если нет специальной измерительной аппаратуры, можно произвести проверку при помощи светодиода. Светодиод подключается анодом к контакту LED, катодом к любому контакту GND ISP-разъема. При подаче питания светодиод должен светится в «полнакала». При замыкании пинцетом ножек кварцевого генератора светодиод должен либо засветится в «полный накал», либо свечение должно отсутствовать.

Без ощибок собранный программатор с правильно запрограммированным микроконтроллером в настройке не нуждается. Но если у программируемого МК вход RESET подтянут к напряжению питания резистором, то номинал резистора не должен быть ниже 10 кОм - это связанно с пониженным напряжением питания управляющего контроллера в схеме программатора и введением ограничительных резисторов на шине ISP-разъема.

Обсудить статью ПРОГРАММАТОР AVR USB

В интернете представлено множество схем программаторов микроконтроллеров. Представляю вариант внутрисхемного универсального USB программатора с возможностью отладки, которым пользуюсь я. Вы сможете собрать данный программатор своими руками.

Основой программатора является микросхема FT2232D . Представляет она собой преобразователь USB в два порта UART. Особенность заключается в том, что «верхний» канал А может работать в режимах JTAG, SPI и I 2 C, что и требуется для программирования микроконтроллеров, различных микросхем памяти и т.п.

Разработка данного USB-программатора ведется на компьютере с использованием библиотек от фирмы FTDI Chip.

Питается устройство от интерфейса USB. При правильной сборке схема не нуждается в настройке. Функционирование устройства зависит от мастерства разработчика ПО. Резисторы R8, R9, R12, R13, R14, R15, R16 являются токоограничивающими при неправильном соединении с устройством, соответственно, выводы программируемого устройства не должны соединяться с другими элементами в схеме, или иметь такие подтяжки, которые при образовании делителей напряжения не искажали бы логические уровни. Микросхема U1 используется для сохранения пользовательских настроек.

Выводы U2 (канал А):
24 - ADBUS0 – выход- в режиме JTAG TCK, в режиме SPI SK;
23 - ADBUS1 – выход- в режиме JTAG TDI, в режиме SPI DO;
22 - ADBUS2 – вход- в режиме JTAG TDO, в режиме SPI DI;
21 - ADBUS3 – выход- в режиме JTAG TMS, в режиме SPI как вспомогательный сигнал(CS);
20 - ADBUS4 – в режиме JTAG вход\выход, в режиме SPI вспомогательный выход. Этот вывод используется для подачи сигнала RESET в микроконтроллер;
15 - AСBUS0 – свободно программируемый вход\выход во всех режимах (опционно используется для подачи питания в программируемое устройство);
13 - AСBUS1 – свободно программируемый вход\выход во всех режимах.

В принципе, эти выводы многофункциональные. Их поведение определяется выбранным режимом при открытии порта.

Канал В используется для отладки программируемого устройства. Для этого нужно только иметь незадействованный порт UART в микроконтроллере. Далее дело техники. В программе микроконтроллера в нужных местах используем функцию форматированного вывода printf().

40 -BDBUS0 – выход- в режиме UART TXD;
39 -BDBUS1 – вход- в режиме UART RXD;
28 - BСBUS2 – выход- в режиме UART LED-индикатор (зажигается при передаче данных через USB);
27 - BСBUS3 – выход- в режиме UART LED-индикатор (зажигается при приеме данных через USB).

Ниже приведена печатная плата программатора

На сегодняшний день данный универсальный программатор поддерживает микроконтроллеры AVR по интерфейсам JTAG и SPI. Причем скорость прошивки Atmega64 по JTAG не более 5-и секунд, по SPI не более 8-ми секунд. Принципиально, прошивать можно любые микроконтроллеры, к которым распространяется спецификация для программатора. В настоящий момент, например, ведется разработка для поддержки микроконтроллеров NEC.

Рабочая форма поделена на две части: слева таблицы для работы с FLASH (сверху) и EEPROM (снизу), сюда можно открывать файлы или загружать прошивки из микроконтроллера, делать верификацию, править содержимое ячеек памяти; справа текстовое поле для отладки, сюда выводятся данные с канала В, также можно там вводить текст, который отправится в порт (функционально это аналог HyperTerminal). Разработка ведется на платформе Visual C# под Windows. Также есть возможность разрабатывать на других языках. Программатор может работать и под Linux.

Используемая литература:
1. А.В. Евстигнеев «Микроконтроллеры AVR семейств Tiny и Mega фирмы ATMEL», М. Издательский дом «Додэка-ХХI», 2005.
2. Future Technology Devices International Ltd. “FT2232D Dual USB UART/FIFO I.C.” , Datasheet, 2006.
3. Future Technology Devices International Ltd. “Software Application Development D2XX Programmer"s Guide” , Document, 2009.
4. Future Technology Devices International Ltd. “Programmers Guide for High Speed FTCJTAG DLL” , Application note AN_110, 2009.
5. Future Technology Devices International Ltd. “Programmers Guide for High Speed FTCSPI DLL” , Application note AN_111, 2009.
6. Эндрю Троелсен «С# и платформа.NET» М.,С-П. Питер, 2007.

Скачать исходники ПО и печатную плату в формате вы можете ниже

Борисов Алексей () г.Сызрань, Самарская обл.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
U1 Микросхема AT93C46D-8S 1 В блокнот
U2 Микросхема FT2232D 1 В блокнот
VT1 MOSFET-транзистор

BSS84

1 В блокнот
С1 Конденсатор 0.01 мкФ 1 В блокнот
С2, С3 Конденсатор 27 пФ 2 В блокнот
С4, С5, С7, С9, С10 Конденсатор 0.1 мкФ 5 В блокнот
С6 Конденсатор 0.033 мкФ 1 В блокнот
С8 Электролитический конденсатор 10 мкФ 1 В блокнот
R1 Резистор

2.2 кОм

1 0.05Вт В блокнот
R2 Резистор

10 кОм

1 0.05Вт В блокнот
R3, R4 Резистор

27 Ом

2 0.05Вт В блокнот
R5 Резистор

470 Ом

1 0.05Вт В блокнот
R6, R7 Резистор

1.5 кОм

2 0.05Вт В блокнот
R8-R16 Резистор

У радиотехников, которые любят заниматься конструированием электронных приборов, время от времени возникает необходимость использования в своих разработках микроконтроллеров. Применение этих полупроводниковых приборов

открывает огромные перспективы перед радиотехником. Микроконтроллеры выпускаются всего несколькими фирмами, лидерами из которых являются MicrochipTechnology, ATMEL, ARMLimited. Главной особенностью подобных приборов является необходимость их программной прошивки. Для этого и необходимы программаторы. На сегодняшний день существует огромный выбор различных типов программаторов, правда, цена таких изделий весьма высока, и не каждый радиолюбитель сможет позволить себе приобрести такое устройство.

В этой статье мы рассмотрим USB-программатор (AVR) на базе управляющего микроконтроллера Atmega 8. Это изделие достаточно простое, для того чтобы радиолюбитель смог собрать его самостоятельно и не тратил большие деньги на фирменное изделие. Выбранный нами USB-программатор (AVR) имеет минимальную обвязку микроконтроллера, что позволяет собрать весьма миниатюрный прибор. Такое изделие не займет много места, оно имеет обычной флэшки. USB-программатор (AVR) в своей схеме содержит микроконтроллер тип корпуса - TQFP 32 (не следует путать с типом корпуса DIP, так как у них различные распиновки). Схема такого устройства приведена на фото.

Приступим к описанию схемы прибора. Перемычка J1 используется в том случае, когда возникает необходимость прошивки микроконтроллера, имеющего тактовую частоту ниже 1,5 Мгц. При желании эта перемычка легко исключается из схемы, для этого 25-й вывод контроллера садится на «землю». В таком случае AVR-USB-программатор всегда будет функционировать на пониженной частоте. Следует учесть, что программирование на занимает больше времени, но решать, конечно же, вам. Стабилитроны D1, D2 применяются для согласования уровня между USB-шиной и программатором. Голубой светодиод сигнализирует о готовности устройства к программированию микроконтроллера, красный диод горит в процессе программирования. Схема имеет IDC-06 разъем, на который выведены контакты, распиновка которых соответствует типу ATMEL 6-пинового разъема ISP. На указанный разъем выводятся контакты питания микроконтроллеров, оно берется с USB-порта персонального компьютера, следовательно, необходимо быть внимательным, чтобы не допустить С помощью этого же разъема происходит программирование и управляющего контроллера, для этого необходимо соединить контакты Reset на контроллере и на разъеме (на схеме показано красным пунктиром).

Перемычка снижения скорости программатора и разъем подключения микроконтроллера расположены на торце устройства. Вот что представляет собой USB-программатор (AVR), как видите, все элементарно.

После сборки устройства необходимо прошить управляющий микроконтроллер, для этого рекомендую использовать программу PonyProg. При программировании заводим кристалл на функционирование от внешнего тактирующего источника на 12 Мгц.

Описанный в этой статье USB-программатор для AVR работает со всеми микроконтроллерами типа AVR, позволяет прошивать их, смотреть записанное содержимое устройства, стирать чипы, менять конфигурацию.